HPC AND DATA CENTER CONTROLS SYSTEMS GUIDELINES

Revision 2, Prepared for EEHPCWG – 10/30/14 (by Bruce Myatt)

- GUIDELINES FOR THE SELECTION, DESIGN AND OPERATIONS OF FACILITIES AND EQUIPMENT CONTROLS SYSTEMS DEDICATED TO HPC & SUPERCOMPUTING SPACES
 - Owner/user objectives and KPI's
 - Functional
 - Financial
 - Environmental/sustainable
 - Risk management
 - Graded mitigation
 - Life cycle management
 - Overall controls strategy
 - Configuration
 - Controls algorithms
 - Sequence of operations
 - Operating criteria and efficiencies
 - Energy efficient and energy management,
 - Reliable, scalable, flexible, and adaptable in design & operations
- FACILITIES & OPERATIONS MANAGEMENT
 - IT Platforms, Communications & Environment Requirements
 - HPC supercomputers & exa-scale computing
 - Enterprise data processing
 - Hyper-scale cloud computing & web services
 - Combined spaces
 - Federal Government, Site & Organizational Standards
 - Risk Management
 - Operations Management
 - Professional codes & standards
 - ASME, ASHRAE, IEEE, ANSI, others
 - Construction, Environmental and Operating Permits
 - Utility Interface and Program Support
 - Electricity & Gas Utility Rates
 - Rebate Programs & Commitments
 - On-Site Power Generation
 - DCIM database and monitoring interface
 - Software and hardware compatibility
 - Multiple platform management
 - Systems interface & translators
 - Metadata management
 - Asset & configuration management
 - Operations management
 - Predictive analytics
- MEP DESIGN BASIS
 - Facilities types
 - Shared power & cooling & waste heat with building/ campus/ community
 - Dedicated data center power, space & cooling
 - Sub stations and other integrated facilities

- Operating Strategy
 - White space loads and layout
 - Power density
 - Environmental considerations (humidity & temp)
- Power & cooling strategies & equipment
 - Cooling Distribution
 - Air Systems
 - Underfloor
 - Overhead
 - Chilled/ Warm Water Systems
 - Rear door heat exchanger
 - Conduction/ Convection
 - Liquid cooling (dialectic fluids and mineral oil)
 - Combined strategies
 - Electrical Distribution
 - AC Power
 - Low Voltage
 - Medium Voltage
 - DC Power
 - Combined strategies
 - Automation
 - Free cooling
 - Equipment VFD's
 - Power transition
 - Intelligent systems
 - Substation and integrated facilities automation
 - Monitoring, Control and Communications
 - EPMS
 - Branch Circuit Monitoring
- SELECTION & INTEGRATION OF CONTROLS SYSTEMS
 - Performance Criteria
 - Scalability
 - Integration
 - Criticality & Redundancy
 - Fault Tolerance & Single Points of Failure
 - White Space
 - Central Plant
 - SCADA
 - Other facilities
 - Redundancy
 - Communications & Connectivity
 - Hardware
 - Software
 - Master Control
 - CPU's
 - Motion Controllers & Instrumentation
 - Remote or Local
 - Switchover Time

- MTA & I/O Modules
- Transfer of Control
 - Device Connectivity
 - Time to Switch
 - MTBF
- Systems Interface
 - BACNET
 - MODBUS
 - SNMP
 - OEM Equipment
 - other
- Control System Technology
 - DDC (Direct Digital Controls)
 - PLC (Programmable Logic Controls)
 - DCS (Distributed Controls System)
- Systems Service
 - BMS/BAS (HVAC)
 - SCADA (Power Distribution)
 - Substation & Integrated Facilities
 - EPMA & Monitoring/Communications
 - Other facilities
- Programming Strategies
 - Individual Controller Programming
 - Master Control Programming
 - Visual Displays & Single Pane of Glass
- Systems Architecture
 - Servers & Work Stations
 - Client
 - HMI
 - Web Server
 - Security
 - Access Levels
 - Firewalls
 - Network Communications
 - TCP/IP Protocols
 - Wireless
 - RF
 - Ethernet
- OPERATIONS & MAINTENANCE
 - Commissioning
 - Operator Training
 - MEP Equipment Operations, Maintenance & Test Programs
 - Operating Conditions
 - Normal
 - Emergency
 - Alarms & Alerts
 - Maintenance Packages
 - Test Procedures

- Operations Outages
 - Planned maintenance
 - Unplanned recovery
- Operating Improvements
 - Technology refresh and upgrades
 - Change in operating criteria (temperature, humidity, power density, redundancy)
 - Power, space and cooling equipment upgrades
 - Retro-commissioning
- Controls Equipment & Software Maintenance
 - Proprietary Vendor Program
 - Owner access & control
 - Time to Respond
 - User Managed Program
 - Staff Skillsets
 - Change Management
- Operating History
 - Maintenance Programs
 - Preventative, Predictive, Corrective, and Replacement
 - Records Management
 - Document Control
 - Data Base Interaction and Automation

• SEQUENCES OF OPERATION

(Example: Sequence of operations for BMS controls in an air cooled data center space under Normal Operating Conditions)

(by Vali Sorrell)

- AHUs/CRAHs
 - Recommended temperature setpoint
 - Ref: ASHRAE TC 9.9 Thermal Guidelines
 - For contained environments
 - Control fan speed to maintain differential pressure setpoint between hot and cold aisles
 - Use all fans (including redundant units) at part speed to meet demand
 - Control supply air temperature to setpoint by modulating chilled water valve
 - Use 2-way chilled water valves only
 - For uncontained environments
 - Control fan speed to maintain underfloor pressure (for UAD) or duct static pressure (for OAD)
 - Control supply air temperature to setpoint by modulating chilled water valve
 - Use 2-way chilled water valves only
- Chiller plants
 - Chillers
 - Recommended chilled water supply temperature setpoint
 - Measure load by flow meters and temperature sensors
 - Sequence of chillers

- Restart sequence
- Cooling towers
 - Control of fan speed
 - Determine minimum acceptable tower leaving temperature
 - Run fans to optimize chiller performance; modulate fan speeds downward only when needed to keep tower leaving temperature above minimum acceptable
 - Use as many fans and cooling tower cells as possible to meet demand
- Pumps
 - Chilled water pumps
 - Modulate pump speeds to maintain differential pressure setpoint in the chilled water piping loop
 - Use all pumps (including redundant units) at part speed to meet demand
 - Condenser water pumps
- Heat exchangers/economizer
 - Use integrated economizer only
- Thermal storage
 - Determine need or time of ride-through i.e. 5 minutes to 30 minutes?
 - Consider using an in-line system (part of chilled water piping)

• Hardware

- Front end
 - Look and feel of interface
 - Multiple access points within network
 - Remote access?
 - Maintain archival data
 - Manage alarms, alerts, system notifications
 - Integration with other functions and systems
 - Integration with DCIM (TBD)
- Controllers
 - Redundant controllers, where appropriate
 - Dedicated controller for large equipment (e.g. cooling towers, AHUs, etc.)
 - Integration with manufacturer-provided control panels (e.g. chillers)
- Actuators
- Dampers
- Valves
- Sensors
 - Temperature
 - Wireless vs. wired
 - Accuracy
 - Humidity
 - Wireless vs. wired
 - Accuracy
 - Dew point
 - Accuracy
 - Actuator/damper/valve position indicators
 - 2-position vs. continuous
- Network

- Topology
- Commissioning